The Structure of cis-Bicyclo[3.3.0]octane-3-spiro-5' ${ }^{\prime}$-hydantoin*

By P. Smith-Verdier, F. Florencio and S. García-Blanco
Departamento de Rayos X, Instituto de Química-Física 'Rocasolano', Serrano 119, Madrid-6, Spain

(Received 1 August 1978; accepted 25 September 1978)

Abstract

C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\), monoclinic, $\quad C 2 / m, \quad a=$ $10 \cdot 171$ (1), $b=6 \cdot 600$ (1), $c=15.421$ (1) $\AA, \beta=$ 100.84 (1) $)^{\circ}, Z=4, D_{x}=1.261, D_{m}=1.27 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu(\mathrm{Cu} K a)=0.738 \mathrm{~mm}^{-1}$. The two cyclopentane rings have an envelope conformation. The molecules are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bridges.

Introduction. The present determination continues investigations on the structure of heterocyclic spiro derivatives with pharmacological properties (Gonzalez Trigo, Avendaño \& Martinez Moreno, 1974). The title compound was prepared by Dr Gonzalez Trigo and Dr C. Avendaño using the Strecker synthesis on cis-bicyclo[3.3.0]octan-3-one. NMR studies revealed that the cyclopentane rings have an envelope conformation and that $C\left(4^{\prime}\right)$ of the hydantoin ring is situated at the convex part of the bicyclic system. These facts were confirmed by the present analysis.

Cell parameters were obtained by a least-squares procedure from the settings of 25 reflexions measured on a four-circle diffractometer with $\mathrm{Cu} K \alpha$ radiation. Intensities were collected on a Philips PW 1100 com-puter-controlled four-circle diffractometer operating in the $\theta-2 \theta$ scan mode with graphite-monochromated $\mathrm{Cu} K \alpha$ radiation. 941 reflexions up to $\theta=65^{\circ}$ were measured. 51 reflexions with $I<2 \sigma(I)$ were omitted as unobserved, leaving 890 unique reflexions which were employed in the analysis. The data were corrected for Lorentz-polarization effects but not for absorption.
*The Conformation of Heterocyclic Spiro Compounds. IV.

Table 1. Final atomic positional parameters $\left(\times 10^{4}\right)$ with e.s.d.'s in parentheses

	x	y	z
	x	y	z
$\mathrm{~N}\left(1^{\prime}\right)$	$1635(3)$	0	$819(2)$
$\mathrm{C}\left(2^{\prime}\right)$	$1931(3)$	0	$12(2)$
$\mathrm{N}\left(3^{\prime}\right)$	$3320(2)$	0	$121(1)$
$\mathrm{C}\left(4^{\prime}\right)$	$3915(3)$	0	$986(2)$
$\mathrm{C}\left(3,5^{\prime}\right)$	$2803(3)$	0	$1526(2)$
$\mathrm{O}(1)$	$1175(2)$	0	$-701(1)$
$\mathrm{O}(2)$	$5113(2)$	0	$1268(1)$
$\mathrm{C}(1)$	$3762(4)$	$1167(6)$	$2997(2)$
$\mathrm{C}(2)$	$2875(3)$	$1832(4)$	$2152(1)$
$\mathrm{C}(4)$	$3212(8)$	$1827(8)$	$3837(2)$
$\mathrm{C}(5)$	$2516(13)$	0	$4059(5)$

0567-7408/79/010216-02\$01.00

The dimensions of the crystal were $0.13 \times 0.20 \times 0.35$ mm .

Systematic absences $h k l$ with $h+k \neq 2 n$ indicate space groups $C 2 / m, C m$ or $C 2$. A centrosymmetric structure was suggested by normalized structure factor statistics. As $Z=4$ the molecules must occupy special positions, which may be at a mirror plane, twofold axis or centre of symmetry. The structure was solved with MULTAN 74 (Main, Woolfson, Lessinger, Germain \& Declercq, 1974) applied to 200 reflexions with $|E|\rangle$ 1.90 . All atoms other than H were located from the E map based on the phases obtained. The molecules were found to lie on mirror planes.

The atomic positions were refined by a full-matrix least-squares method with anisotropic temperature factors for non-hydrogen atoms, until R had dropped to $0 \cdot 10$. A difference synthesis then revealed all the H atoms. Refinement was continued with H atoms included with isotropic temperature factors. The quantity minimized was $\sum w(\Delta F)^{2}$. For the observed reflexions the final $R=0.080$ and $R_{w}=0.110$ where $R_{w}=$ $\left(\sum w \Delta^{2} / \sum w \mid F_{o}{ }^{2}\right)^{1 / 2}$. Scattering factors were taken from International Tables for X-ray Crystallography (1974). The computations were made with XRAY 70 (Stewart, Kundell \& Baldwin, 1970). Final parameters for non-hydrogen and \mathbf{H} atoms are given in Tables 1 and $2 . \dagger$

[^0]Table 2. Final H atom positional parameters ($\times 10^{3}$) and isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

	x	y	z	$U_{\text {iso }}$
$H\left(1^{\prime}\right)$	$87(7)$	0	$90(4)$	70
$H\left(3^{\prime}\right)$	$373(5)$	0	$-27(3)$	43
$H(1)$	$466(7)$	$211(12)$	$280(4)$	143
$H(21)$	$195(6)$	$192(10)$	$224(3)$	123
$H(22)$	$281(7)$	$316(11)$	$173(4)$	145
$H(41)$	$284(6)$	$311(11)$	$370(4)$	122
$H(42)$	$416(7)$	$250(12)$	$444(4)$	150
$H(51)$	$200(1)$	0	$445(7)$	169
$H(52)$	$165(18)$	0	$359(10)$	224
C 1979 International Union of Crystallography				

Discussion. Bond lengths and angles are shown in Table 3. Fig. 1 displays the structural formula with the atomic labelling.

The molecule has a mirror plane which coincides with the mirror plane in the crystal perpendicular to b. In this plane are situated the hydantoin ring and the spiranic $C\left(3,5^{\prime}\right)$ (Fig. 1). The hydantoin ring is consequently planar. Bond lengths and angles in this ring are similar to those found in N -methyltropane-3-spiro-5'hydantoin (Smith-Verdier, Florencio \& Garcia-Blanco, 1977) and in N-methylgranatanine-3-spiro-5'-hydantoin (Florencio, Smith-Verdier \& Garcia-Blanco, 1978).
$\mathrm{C}(1), \mathrm{C}(1)^{\prime}, \mathrm{C}(2), \mathrm{C}(2)^{\prime}$ and $\mathrm{C}(1), \mathrm{C}(1)^{\prime}, \mathrm{C}(4), \mathrm{C}(4)^{\prime}$ of the two cyclopentane rings lie in planes perpendicular to the symmetry plane. $\mathrm{C}\left(3,5^{\prime}\right)$ of the first ring and the $C(5)$ of the second deviate from their respective planes by -0.527 and $-0.442 \AA$ respectively; thus the two cyclopentane rings have an undistorted envelope conformation. The angle between the two rings is 119.3°, practically the same as in an idealized system.
$C\left(4^{\prime}\right)$ of the hydantoin ring is situated in the convex part of the bicyclic system which results in more steric hindrance, in agreement with the studies carried out by Edward \& Jitrangsri (1975) on cyclohexane rings.

Bond distances in the bicyclic system are similar to those found by Ferguson, Phillips \& Restivo (1975) in endo,endo-2,6-bis(phenylcarbamoyloxy)-cis-bicyclo[3.3.0]octane.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for nonhydrogen atoms with e.s.d.'s in parentheses

$\mathrm{C}(1)-\mathrm{C}(2)$	1.505 (4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	112.7 (4)
$\mathrm{C}(2)-\mathrm{C}\left(3,5^{\prime}\right)$	1.540 (4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(1)^{\prime}$	107.0 (2)
$\mathrm{C}(1)-\mathrm{C}(1)^{\prime}$	1.540 (4)	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(1)^{\prime}$	$106 \cdot 2$ (3)
$\mathrm{C}(1)-\mathrm{C}(4)$	1.567 (7)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(3,5^{\prime}\right)$	$105 \cdot 3$ (2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.471 (10)	$\mathrm{C}(2)-\mathrm{C}\left(3,5^{\prime}\right)-\mathrm{C}(2)^{\prime}$	$105 \cdot 3$ (2)
$\mathrm{C}\left(3,5^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	1.454 (4)	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$103 \cdot 1$ (5)
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.335 (5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(4)^{\prime}$	$110 \cdot 1$ (5)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	1.390 (4)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(3,5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$100 \cdot 1$ (2)
$\mathrm{N}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.357 (4)	$\mathrm{C}(2)-\mathrm{C}\left(3,5^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	114.0 (2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3,5^{\prime}\right)$	1.526 (5)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(3,5^{\prime}\right)$	113.8 (3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}(1)$	1.218 (4)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	106.8 (2)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(2)$	1.214 (4)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}(1)$	128.8 (3)
		$\mathrm{N}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}(1)$	124.4 (3)
		$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	112.0 (3)
		$\mathrm{N}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3,5^{\prime}\right)$	107.3 (2)
		$\mathrm{N}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(2)$	125.7 (3)
		$\mathrm{C}\left(3,5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(2)$	127.0 (3)

Fig. 1. Atom-numbering scheme.

Fig. 2. Projection of the structure down b.

Only $C(4)-C(5)$ is considerably shorter than the normal value of $1.539 \AA$; this effect could be attributed to thermal oscillations of this part of the molecule; the thermal parameters of $C(4)$ and $C(5)$ are very large and the distances between $C(5)$ and the neighbouring molecules are also large, $4 \cdot 398,5 \cdot 333$ and $6 \cdot 340 \AA$.

Two crystallographically independent intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds occur: $\mathrm{N}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right) \ldots \mathrm{O}(1)$ for which $N\left(1^{\prime}\right) \cdots O(1)=2.829(4) \AA$ and $N\left(1^{\prime}\right)-$ $\mathrm{H}\left(1^{\prime}\right) \cdots \mathrm{O}(1)(-x,-y,-z)=163 \cdot 4^{\circ}$, and $\mathrm{N}\left(3^{\prime}\right)-$ $\mathrm{H}\left(3^{\prime}\right) \cdots \mathrm{O}(2)$ for which $\mathrm{N}\left(3^{\prime}\right) \cdots \mathrm{O}(2)(-x+1,-y$, $-z)=2.901(4) \AA$ and $N\left(3^{\prime}\right)-H\left(3^{\prime}\right) \cdots O(2)=177.9^{\circ}$. These hydrogen bonds are indicated by broken lines in Fig. 2 which shows a projection of the crystal structure along b. There are no other contacts $<4 \AA$.

The authors thank the Centro de Proceso de Datos, Ministerio de Educación y Ciencia, Madrid, Spain, for providing facilities for the calculations.

References

Edward, J. T. \& Jitrangsri, C. (1975). Can. J. Chem. 53, 3339-3350.
Ferguson, G., Phillips, S. \& Restivo, R. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 405-408.
Florencio, F., Smith-Verdier, P. \& García-Blanco, S. (1978). Acta Cryst. B34, 1317-1321.

Gonzalez Trigo, J., Avendaño, C. \& Martínez Moreno, M. (1974). Pharm. Mediterr. 10, 639-653.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-98. Birmingham: Kynoch Press.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1974). MULTAN. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Smith-Verdier, P., Florencio, F. \& García-Blanco, S. (1977). Acta Cryst. B33, 3381-3385.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 System. Computer Science Center, Univ. of Maryland, College Park, Maryland.

[^0]: \dagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33920 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

